Skip to content

Heterogeneous Neural Networks

Neural networks are probably the most popular machine learning algorithms in recent years. FATE provides a federated Heterogeneous neural network implementation.

This federated heterogeneous neural network framework allows multiple parties to jointly conduct a learning process with partially overlapping user samples but different feature sets, which corresponds to a vertically partitioned virtual data set. An advantage of Hetero NN is that it provides the same level of accuracy as the non privacy-preserving approach while at the same time, reveal no information of each private data provider.

Basic FrameWork

The following figure shows the proposed Federated Heterogeneous Neural Network framework.

Figure 1 (Framework of Federated Heterogeneous Neural
Network)

Party B: We define the party B as the data provider who holds both a data matrix and the class label. Since the class label information is indispensable for supervised learning, there must be an party with access to the label y. The party B naturally takes the responsibility as a dominating server in federated learning.

Party A: We define the data provider which has only a data matrix as party A. Party A plays the role of clients in the federated learning setting.

The data samples are aligned under an encryption scheme. By using the privacy-preserving protocol for inter-database intersections, the parties can find their common users or data samples without compromising the non-overlapping parts of the data sets.

Party B and party A each have their own bottom neural network model, which may be different. The parties jointly build the interactive layer, which is a fully connected layer. This layer's input is the concatenation of the two parties' bottom model output. In addition, only party B owns the model of interactive layer. Lastly, party B builds the top neural network model and feeds the output of interactive layer to it.

Forward Propagation of Federated Heterogeneous Neural Network

Forward Propagation Process consists of three parts.

  • Part Ⅰ
    Forward Propagation of Bottom Model.
  1. Party A feeds its input features X to its bottom model and gets the forward output of bottom model alpha_A
  2. Party B feeds its input features X to its bottom model and gets the forward output of bottom model alpha_B if active party has input features.
  • Part ⅠⅠ
    Forward Propagation of Interactive Layer.
  1. Party A uses additive homomorphic encryption to encrypt alpha_A(mark as ), and sends the encrypted result to party B.
  2. Party B receives the , multiplies it by interactive layer's party A model weight W_A, get . Party B also multiplies its interactive layer's weight W_B by its own bottom output, getting z_B. Party B generates noise epsilon_B, adds it to and sends addition result to party A.
  3. Party A calculates the product of accumulate noise epsilon_acc and bottom input alpha_A (epsilon_acc * alpha_A). Decrypting the received result , Party A adds the product to it and sends result to Active party.
  4. Party B subtracts the party A's sending value by epsilon_B( get z_A + epsilon_acc * alpha_A), and feeds z = z_A + epsilon_acc * alpha_A + z_B(if exists) to activation function.
  • Part ⅠⅠⅠ
    Forward Propagation of Top Model.
  1. Party B takes the output of activation function's output of interactive layer g(z) and runs the forward process of top model. The following figure shows the forward propagation of Federated Heterogeneous Neural Network framework.

Figure 2 (Forward Propagation of Federated Heterogeneous Neural
Network)

Backward Propagation of Federated Heterogeneous Neural Network

Backward Propagation Process also consists of three parts.

  • Part I
    Backward Propagation of Top Model.
  1. Party B calculates the error delta of interactive layer output, then updates top model.
  • Part II
    Backward Propagation of Interactive layer.
  1. Party B calculates the error delta_act of activation function's output by delta.
  2. Party B propagates delta_bottomB = delta_act * W_B to bottom model, then updates W_B(W_B -= eta * delta_act * alpha_B).
  3. Party B generates noise epsilon_B, calculates and sends it to party A.
  4. Party A encrypts epsilon_acc, sends to party B. Then party B decrypts the received value. Party A generates noise epsilon_A, adds epsilon_A / eta to decrypted result(delta_act * alpha_A + epsilon_B + epsilon_A / eta) and add epsilon_A to accumulate noise epsilon_acc(epsilon_acc += epsilon_A). Party A sends the addition result to party B. (delta_act * W_A + epsilon_B + epsilon_A / eta)
  5. Party B receives and delta_act * alpha_A + epsilon_B + epsilon_A / eta. Firstly it sends party A's bottom model output' error to party A. Secondly updates W_A -= eta * (delta_act * W_A + epsilon_B + epsilon_A / eta - epsilon_B) = eta * delta_act * W_A - epsilon_B = W_TRUE - epsilon_acc. Where W_TRUE represents the actually weights.
  6. Party A decrypts and passes delta_act * (W_A + acc) to its bottom model.
  • Part III
    Backward Propagation of Bottom Model.
  1. Party B and party A updates their bottom model separately. The following figure shows the backward propagation of Federated Heterogeneous Neural Network framework.

Figure 3 (Backward Propagation of Federated Heterogeneous Neural
Network)

Param

hetero_nn_param

Classes

SelectorParam

Parameters used for Homo Neural Network.

Parameters:

Name Type Description Default
method None

None or str back propagation select method, accept "relative" only, default: None

None
selective_size None

int deque size to use, store the most recent selective_size historical loss, default: 1024

1024
beta None

int sample whose selective probability >= power(np.random, beta) will be selected

1
min_prob None

Numeric selective probability is max(min_prob, rank_rate)

0
Source code in federatedml/param/hetero_nn_param.py
class SelectorParam(object):
    """
    Parameters used for Homo Neural Network.

    Args:
        method: None or str
            back propagation select method, accept "relative" only, default: None
        selective_size: int
            deque size to use, store the most recent selective_size historical loss, default: 1024
        beta: int
            sample whose selective probability >= power(np.random, beta) will be selected
        min_prob: Numeric
            selective probability is max(min_prob, rank_rate)

    """
    def __init__(self, method=None, beta=1, selective_size=consts.SELECTIVE_SIZE, min_prob=0, random_state=None):
        self.method = method
        self.selective_size = selective_size
        self.beta = beta
        self.min_prob = min_prob
        self.random_state = random_state

    def check(self):
        if self.method is not None and self.method not in ["relative"]:
            raise ValueError('selective method should be None be "relative"')

        if not isinstance(self.selective_size, int) or self.selective_size <= 0:
            raise ValueError("selective size should be a positive integer")

        if not isinstance(self.beta, int):
            raise ValueError("beta should be integer")

        if not isinstance(self.min_prob, (float, int)):
            raise ValueError("min_prob should be numeric")
__init__(self, method=None, beta=1, selective_size=1024, min_prob=0, random_state=None) special
Source code in federatedml/param/hetero_nn_param.py
def __init__(self, method=None, beta=1, selective_size=consts.SELECTIVE_SIZE, min_prob=0, random_state=None):
    self.method = method
    self.selective_size = selective_size
    self.beta = beta
    self.min_prob = min_prob
    self.random_state = random_state
check(self)
Source code in federatedml/param/hetero_nn_param.py
def check(self):
    if self.method is not None and self.method not in ["relative"]:
        raise ValueError('selective method should be None be "relative"')

    if not isinstance(self.selective_size, int) or self.selective_size <= 0:
        raise ValueError("selective size should be a positive integer")

    if not isinstance(self.beta, int):
        raise ValueError("beta should be integer")

    if not isinstance(self.min_prob, (float, int)):
        raise ValueError("min_prob should be numeric")
HeteroNNParam (BaseParam)

Parameters used for Hetero Neural Network.

Parameters:

Name Type Description Default
task_type None

str, task type of hetero nn model, one of 'classification', 'regression'.

'classification'
config_type None

str, accept "keras" only.

'keras'
bottom_nn_define None

a dict represents the structure of bottom neural network.

None
interactive_layer_define None

a dict represents the structure of interactive layer.

None
interactive_layer_lr None

float, the learning rate of interactive layer.

0.9
top_nn_define None

a dict represents the structure of top neural network.

None
optimizer None

optimizer method, accept following types: 1. a string, one of "Adadelta", "Adagrad", "Adam", "Adamax", "Nadam", "RMSprop", "SGD" 2. a dict, with a required key-value pair keyed by "optimizer", with optional key-value pairs such as learning rate. defaults to "SGD"

'SGD'
loss None

str, a string to define loss function used

None
epochs None

int, the maximum iteration for aggregation in training.

100
batch_size None

int, batch size when updating model. -1 means use all data in a batch. i.e. Not to use mini-batch strategy. defaults to -1.

required
early_stop None

str, accept 'diff' only in this version, default: 'diff' Method used to judge converge or not. a) diff: Use difference of loss between two iterations to judge whether converge.

required
floating_point_precision None

None or integer, if not None, means use floating_point_precision-bit to speed up calculation, e.g.: convert an x to round(x * 2**floating_point_precision) during Paillier operation, divide the result by 2**floating_point_precision in the end.

23
drop_out_keep_rate None

float, should betweend 0 and 1, if not equals to 1.0, will enabled drop out

1.0
callback_param None

CallbackParam object

<federatedml.param.callback_param.CallbackParam object at 0x7f275533b2d0>
Source code in federatedml/param/hetero_nn_param.py
class HeteroNNParam(BaseParam):
    """
    Parameters used for Hetero Neural Network.

    Args:
        task_type: str, task type of hetero nn model, one of 'classification', 'regression'.
        config_type: str, accept "keras" only.
        bottom_nn_define: a dict represents the structure of bottom neural network.
        interactive_layer_define: a dict represents the structure of interactive layer.
        interactive_layer_lr: float, the learning rate of interactive layer.
        top_nn_define: a dict represents the structure of top neural network.
        optimizer: optimizer method, accept following types:
            1. a string, one of "Adadelta", "Adagrad", "Adam", "Adamax", "Nadam", "RMSprop", "SGD"
            2. a dict, with a required key-value pair keyed by "optimizer",
                with optional key-value pairs such as learning rate.
            defaults to "SGD"
        loss:  str, a string to define loss function used
        epochs: int, the maximum iteration for aggregation in training.
        batch_size : int, batch size when updating model.
            -1 means use all data in a batch. i.e. Not to use mini-batch strategy.
            defaults to -1.
        early_stop : str, accept 'diff' only in this version, default: 'diff'
            Method used to judge converge or not.
                a)	diff: Use difference of loss between two iterations to judge whether converge.
        floating_point_precision: None or integer, if not None, means use floating_point_precision-bit to speed up calculation,
                                   e.g.: convert an x to round(x * 2**floating_point_precision) during Paillier operation, divide
                                          the result by 2**floating_point_precision in the end.
        drop_out_keep_rate: float, should betweend 0 and 1, if not equals to 1.0, will enabled drop out
        callback_param: CallbackParam object
    """

    def __init__(self,
                 task_type='classification',
                 config_type="keras",
                 bottom_nn_define=None,
                 top_nn_define=None,
                 interactive_layer_define=None,
                 interactive_layer_lr=0.9,
                 optimizer='SGD',
                 loss=None,
                 epochs=100,
                 batch_size=-1,
                 early_stop="diff",
                 tol=1e-5,
                 encrypt_param=EncryptParam(),
                 encrypted_mode_calculator_param=EncryptedModeCalculatorParam(mode="confusion_opt"),
                 predict_param=PredictParam(),
                 cv_param=CrossValidationParam(),
                 validation_freqs=None,
                 early_stopping_rounds=None,
                 metrics=None,
                 use_first_metric_only=True,
                 selector_param=SelectorParam(),
                 floating_point_precision=23,
                 drop_out_keep_rate=1.0,
                 callback_param=CallbackParam()):
        super(HeteroNNParam, self).__init__()

        self.task_type = task_type
        self.config_type = config_type
        self.bottom_nn_define = bottom_nn_define
        self.interactive_layer_define = interactive_layer_define
        self.interactive_layer_lr = interactive_layer_lr
        self.top_nn_define = top_nn_define
        self.batch_size = batch_size
        self.epochs = epochs
        self.early_stop = early_stop
        self.tol = tol
        self.optimizer = optimizer
        self.loss = loss
        self.validation_freqs = validation_freqs
        self.early_stopping_rounds = early_stopping_rounds
        self.metrics = metrics or []
        self.use_first_metric_only = use_first_metric_only

        self.encrypt_param = copy.deepcopy(encrypt_param)
        self.encrypted_model_calculator_param = encrypted_mode_calculator_param
        self.predict_param = copy.deepcopy(predict_param)
        self.cv_param = copy.deepcopy(cv_param)

        self.selector_param = selector_param
        self.floating_point_precision = floating_point_precision

        self.drop_out_keep_rate = drop_out_keep_rate

        self.callback_param = copy.deepcopy(callback_param)

    def check(self):
        self.optimizer = self._parse_optimizer(self.optimizer)
        supported_config_type = ["keras"]

        if self.task_type not in ["classification", "regression"]:
            raise ValueError("config_type should be classification or regression")

        if self.config_type not in supported_config_type:
            raise ValueError(f"config_type should be one of {supported_config_type}")

        if not isinstance(self.tol, (int, float)):
            raise ValueError("tol should be numeric")

        if not isinstance(self.epochs, int) or self.epochs <= 0:
            raise ValueError("epochs should be a positive integer")

        if self.bottom_nn_define and not isinstance(self.bottom_nn_define, dict):
            raise ValueError("bottom_nn_define should be a dict defining the structure of neural network")

        if self.top_nn_define and not isinstance(self.top_nn_define, dict):
            raise ValueError("top_nn_define should be a dict defining the structure of neural network")

        if self.interactive_layer_define is not None and not isinstance(self.interactive_layer_define, dict):
            raise ValueError(
                "the interactive_layer_define should be a dict defining the structure of interactive layer")

        if self.batch_size != -1:
            if not isinstance(self.batch_size, int) \
                    or self.batch_size < consts.MIN_BATCH_SIZE:
                raise ValueError(
                    " {} not supported, should be larger than 10 or -1 represent for all data".format(self.batch_size))

        if self.early_stop != "diff":
            raise ValueError("early stop should be diff in this version")

        if self.metrics is not None and not isinstance(self.metrics, list):
            raise ValueError("metrics should be a list")

        if self.floating_point_precision is not None and \
                (not isinstance(self.floating_point_precision, int) or\
                 self.floating_point_precision < 0 or self.floating_point_precision > 63):
            raise ValueError("floating point precision should be null or a integer between 0 and 63")

        if not isinstance(self.drop_out_keep_rate, (float, int)) or self.drop_out_keep_rate < 0.0 or \
                self.drop_out_keep_rate > 1.0:
            raise ValueError("drop_out_keep_rate should be in range [0.0, 1.0]")

        self.encrypt_param.check()
        self.encrypted_model_calculator_param.check()
        self.predict_param.check()
        self.selector_param.check()

        descr = "hetero nn param's "

        for p in ["early_stopping_rounds", "validation_freqs",
                  "use_first_metric_only"]:
            if self._deprecated_params_set.get(p):
                if "callback_param" in self.get_user_feeded():
                    raise ValueError(f"{p} and callback param should not be set simultaneously,"
                                     f"{self._deprecated_params_set}, {self.get_user_feeded()}")
                else:
                    self.callback_param.callbacks = ["PerformanceEvaluate"]
                break

        if self._warn_to_deprecate_param("validation_freqs", descr, "callback_param's 'validation_freqs'"):
            self.callback_param.validation_freqs = self.validation_freqs

        if self._warn_to_deprecate_param("early_stopping_rounds", descr, "callback_param's 'early_stopping_rounds'"):
            self.callback_param.early_stopping_rounds = self.early_stopping_rounds

        if self._warn_to_deprecate_param("metrics", descr, "callback_param's 'metrics'"):
            if self.metrics:
                self.callback_param.metrics = self.metrics

        if self._warn_to_deprecate_param("use_first_metric_only", descr, "callback_param's 'use_first_metric_only'"):
            self.callback_param.use_first_metric_only = self.use_first_metric_only

    @staticmethod
    def _parse_optimizer(opt):
        """
        Examples:

            1. "optimize": "SGD"
            2. "optimize": {
                "optimizer": "SGD",
                "learning_rate": 0.05
            }
        """

        kwargs = {}
        if isinstance(opt, str):
            return SimpleNamespace(optimizer=opt, kwargs=kwargs)
        elif isinstance(opt, dict):
            optimizer = opt.get("optimizer", kwargs)
            if not optimizer:
                raise ValueError(f"optimizer config: {opt} invalid")
            kwargs = {k: v for k, v in opt.items() if k != "optimizer"}
            return SimpleNamespace(optimizer=optimizer, kwargs=kwargs)
        elif opt is None:
            return None
        else:
            raise ValueError(f"invalid type for optimize: {type(opt)}")
__init__(self, task_type='classification', config_type='keras', bottom_nn_define=None, top_nn_define=None, interactive_layer_define=None, interactive_layer_lr=0.9, optimizer='SGD', loss=None, epochs=100, batch_size=-1, early_stop='diff', tol=1e-05, encrypt_param=<federatedml.param.encrypt_param.EncryptParam object at 0x7f275533b150>, encrypted_mode_calculator_param=<federatedml.param.encrypted_mode_calculation_param.EncryptedModeCalculatorParam object at 0x7f275533b1d0>, predict_param=<federatedml.param.predict_param.PredictParam object at 0x7f275533b3d0>, cv_param=<federatedml.param.cross_validation_param.CrossValidationParam object at 0x7f275533b190>, validation_freqs=None, early_stopping_rounds=None, metrics=None, use_first_metric_only=True, selector_param=<federatedml.param.hetero_nn_param.SelectorParam object at 0x7f275533b350>, floating_point_precision=23, drop_out_keep_rate=1.0, callback_param=<federatedml.param.callback_param.CallbackParam object at 0x7f275533b2d0>) special
Source code in federatedml/param/hetero_nn_param.py
def __init__(self,
             task_type='classification',
             config_type="keras",
             bottom_nn_define=None,
             top_nn_define=None,
             interactive_layer_define=None,
             interactive_layer_lr=0.9,
             optimizer='SGD',
             loss=None,
             epochs=100,
             batch_size=-1,
             early_stop="diff",
             tol=1e-5,
             encrypt_param=EncryptParam(),
             encrypted_mode_calculator_param=EncryptedModeCalculatorParam(mode="confusion_opt"),
             predict_param=PredictParam(),
             cv_param=CrossValidationParam(),
             validation_freqs=None,
             early_stopping_rounds=None,
             metrics=None,
             use_first_metric_only=True,
             selector_param=SelectorParam(),
             floating_point_precision=23,
             drop_out_keep_rate=1.0,
             callback_param=CallbackParam()):
    super(HeteroNNParam, self).__init__()

    self.task_type = task_type
    self.config_type = config_type
    self.bottom_nn_define = bottom_nn_define
    self.interactive_layer_define = interactive_layer_define
    self.interactive_layer_lr = interactive_layer_lr
    self.top_nn_define = top_nn_define
    self.batch_size = batch_size
    self.epochs = epochs
    self.early_stop = early_stop
    self.tol = tol
    self.optimizer = optimizer
    self.loss = loss
    self.validation_freqs = validation_freqs
    self.early_stopping_rounds = early_stopping_rounds
    self.metrics = metrics or []
    self.use_first_metric_only = use_first_metric_only

    self.encrypt_param = copy.deepcopy(encrypt_param)
    self.encrypted_model_calculator_param = encrypted_mode_calculator_param
    self.predict_param = copy.deepcopy(predict_param)
    self.cv_param = copy.deepcopy(cv_param)

    self.selector_param = selector_param
    self.floating_point_precision = floating_point_precision

    self.drop_out_keep_rate = drop_out_keep_rate

    self.callback_param = copy.deepcopy(callback_param)
check(self)
Source code in federatedml/param/hetero_nn_param.py
def check(self):
    self.optimizer = self._parse_optimizer(self.optimizer)
    supported_config_type = ["keras"]

    if self.task_type not in ["classification", "regression"]:
        raise ValueError("config_type should be classification or regression")

    if self.config_type not in supported_config_type:
        raise ValueError(f"config_type should be one of {supported_config_type}")

    if not isinstance(self.tol, (int, float)):
        raise ValueError("tol should be numeric")

    if not isinstance(self.epochs, int) or self.epochs <= 0:
        raise ValueError("epochs should be a positive integer")

    if self.bottom_nn_define and not isinstance(self.bottom_nn_define, dict):
        raise ValueError("bottom_nn_define should be a dict defining the structure of neural network")

    if self.top_nn_define and not isinstance(self.top_nn_define, dict):
        raise ValueError("top_nn_define should be a dict defining the structure of neural network")

    if self.interactive_layer_define is not None and not isinstance(self.interactive_layer_define, dict):
        raise ValueError(
            "the interactive_layer_define should be a dict defining the structure of interactive layer")

    if self.batch_size != -1:
        if not isinstance(self.batch_size, int) \
                or self.batch_size < consts.MIN_BATCH_SIZE:
            raise ValueError(
                " {} not supported, should be larger than 10 or -1 represent for all data".format(self.batch_size))

    if self.early_stop != "diff":
        raise ValueError("early stop should be diff in this version")

    if self.metrics is not None and not isinstance(self.metrics, list):
        raise ValueError("metrics should be a list")

    if self.floating_point_precision is not None and \
            (not isinstance(self.floating_point_precision, int) or\
             self.floating_point_precision < 0 or self.floating_point_precision > 63):
        raise ValueError("floating point precision should be null or a integer between 0 and 63")

    if not isinstance(self.drop_out_keep_rate, (float, int)) or self.drop_out_keep_rate < 0.0 or \
            self.drop_out_keep_rate > 1.0:
        raise ValueError("drop_out_keep_rate should be in range [0.0, 1.0]")

    self.encrypt_param.check()
    self.encrypted_model_calculator_param.check()
    self.predict_param.check()
    self.selector_param.check()

    descr = "hetero nn param's "

    for p in ["early_stopping_rounds", "validation_freqs",
              "use_first_metric_only"]:
        if self._deprecated_params_set.get(p):
            if "callback_param" in self.get_user_feeded():
                raise ValueError(f"{p} and callback param should not be set simultaneously,"
                                 f"{self._deprecated_params_set}, {self.get_user_feeded()}")
            else:
                self.callback_param.callbacks = ["PerformanceEvaluate"]
            break

    if self._warn_to_deprecate_param("validation_freqs", descr, "callback_param's 'validation_freqs'"):
        self.callback_param.validation_freqs = self.validation_freqs

    if self._warn_to_deprecate_param("early_stopping_rounds", descr, "callback_param's 'early_stopping_rounds'"):
        self.callback_param.early_stopping_rounds = self.early_stopping_rounds

    if self._warn_to_deprecate_param("metrics", descr, "callback_param's 'metrics'"):
        if self.metrics:
            self.callback_param.metrics = self.metrics

    if self._warn_to_deprecate_param("use_first_metric_only", descr, "callback_param's 'use_first_metric_only'"):
        self.callback_param.use_first_metric_only = self.use_first_metric_only

Other features

  • Allow party B's training without features.
  • Support evaluate training and validate data during training process
  • Support use early stopping strategy since FATE-v1.4.0
  • Support selective backpropagation since FATE-v1.6.0
  • Support low floating-point optimization since FATE-v1.6.0
  • Support drop out strategy of interactive layer since FATE-v1.6.0

[1] Zhang Q, Wang C, Wu H, et al. GELU-Net: A Globally Encrypted, Locally Unencrypted Deep Neural Network for Privacy-Preserved Learning//IJCAI. 2018: 3933-3939.

[2] Zhang Y, Zhu H. Additively Homomorphical Encryption based Deep Neural Network for Asymmetrically Collaborative Machine Learning. arXiv preprint arXiv:2007.06849, 2020.


Last update: 2021-11-11
Back to top