SecureBoost: A Lossless Federated Learning Framework

Kewei Cheng¹, **Tao Fan²**, Yilun Jin³, Yang Liu², Tianjian Chen² and Qiang Yang⁴

> ¹University of California, Los Angeles ²Webank ³Peking University ⁴Hong Kong University of Science and Technology

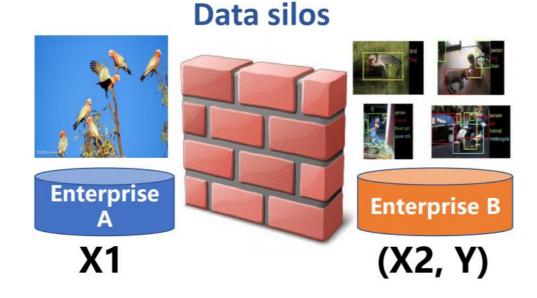
Challenges for AI Industry: Data Privacy and Confidentiality

French regulator fines Google \$57 million for GDPR violations

F Share on Facebook Share on Twitt

Society is increasingly concerned with the unlawful use and exploitation of personal data

Challenges for AI Industry: Data Privacy and Confidentiality



 Many data owners do not have a sufficient amount of data to build high-quality models

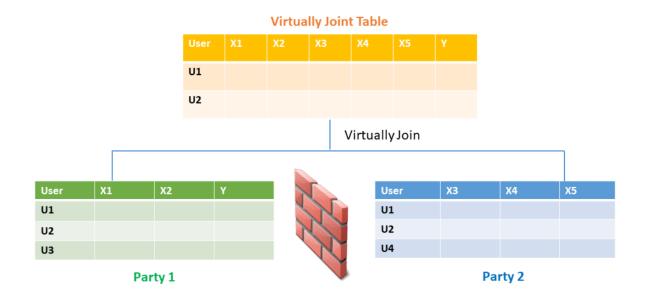
 Different organizations have to collaborate

Challenges for AI Industry: Data Privacy and Confidentiality

Problem Statement

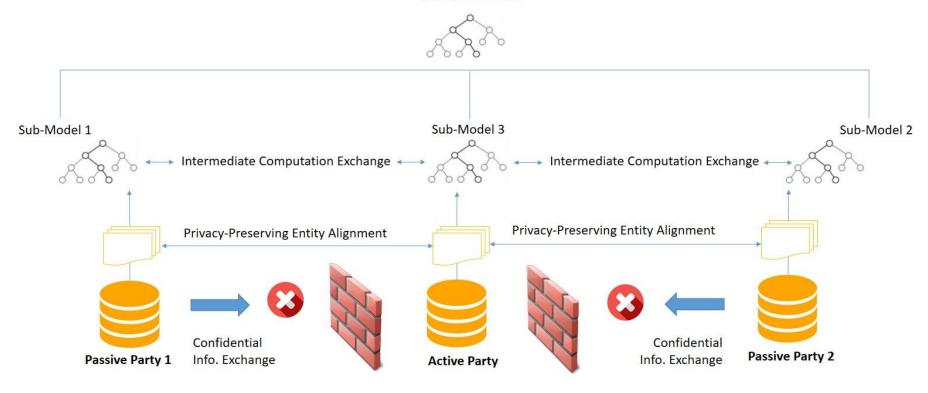
Given: (1) vertically partitioned data; (2) only one data owner holds the label

Goal: Learn a shared model without leaking any information



Framework

SecureBoost



Review of XGBoost

Objective function

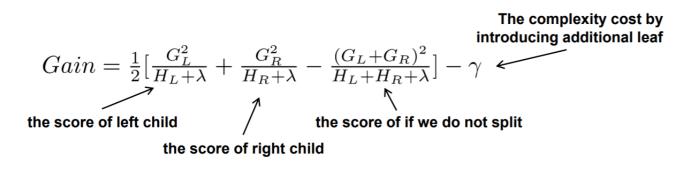
$$\sum_{i=1}^{n} \left[g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t)$$

- where $g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$
- Define the instance set in leaf j as $I_j = \{i | q(x_i) = j\}$
 - Regroup the objective by leaf

$$\begin{aligned} Obj^{(t)} &\simeq \sum_{i=1}^{n} \left[g_{i}f_{t}(x_{i}) + \frac{1}{2}h_{i}f_{t}^{2}(x_{i}) \right] + \Omega(f_{t}) \\ &= \sum_{i=1}^{n} \left[g_{i}w_{q(x_{i})} + \frac{1}{2}h_{i}w_{q(x_{i})}^{2} \right] + \gamma T + \lambda \frac{1}{2}\sum_{j=1}^{T}w_{j}^{2} \\ &= \sum_{j=1}^{T} \left[(\sum_{i \in I_{j}} g_{i})w_{j} + \frac{1}{2}(\sum_{i \in I_{j}} h_{i} + \lambda)w_{j}^{2} \right] + \gamma T \end{aligned}$$

Review of XGBoost

- Greedy learning of the tree
 - Start from tree with depth 0
 - For each leaf node of the tree, try to add a split. The change of objective after adding the split is



• where $G_j = \sum_{i \in I_j} g_i$ $H_j = \sum_{i \in I_j} h_i$

Review of XGBoost

An Algorithm for Split Finding

Algorithm 1 Greedy Split-find Algorithm

M: # features, N: # instances, K: # split candidates 1: for m = 1 to M do generate K split candidates $S_m = \{s_{m1}, s_{m2}, ..., s_{mk}\}$ 2: 3: end for 4: for m = 1 to M do loop N instances to generate gradient histogram with K bins 5: $G_{mk} = \sum g_i$ where $s_{mk-1} < x_{im} < s_{mk}$ $H_{mk} = \sum h_i$ where $s_{mk-1} < x_{im} < s_{mk}$ 6: 7: 8: end for 9: $gain_{max} = 0, G = \sum_{i=1}^{N} g_i, H = \sum_{i=1}^{N} h_i$ 10: for m = 1 to M do $G_L = 0, H_L = 0$ 11: for k = 1 to K do 12: $G_L = G_L + G_{mk}, H_L = H_L + H_{mk}$ 13: $G_R = G - G_L, H_R = H - H_L$ $gain_{max} = max(gain_{max}, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})$ 14: 15: end for 16: 17: end for 18: Output the split with max gain

Recap: XGBoost Algorithm

- Add a new tree in each iteration
- Beginning of each iteration, calculate

 $g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$

• Use the statistics to greedily grow a tree $f_t(x)$

$$Obj = -\frac{1}{2}\sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

- Add $f_t(x)$ to the model $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$
 - Usually, instead we do $y^{(t)} = y^{(t-1)} + \epsilon f_t(x_i)$
 - ϵ is called step-size or shrinkage, usually set around 0.1
 - This means we do not do full optimization in each step and reserve chance for future rounds, it helps prevent overfitting

Federated Learning for XGBoost

Party 1 (Passive			Party 2 (Active Party)				Party	Party 3 (Passive Party)	
Example BillParty)		Education	Example	Age	Gender	Marriage	Label	Example	Amount of given cr
	Payment		X1	20	1	0	0	X1	5000
X1	3102	2	X2	30	1	1	1	X2	300000
X2	17250	3	X3	35	0	1	1	Х3	250000
Х3	14027	2	X4	48	0	1	2	X4	300000
X4	6787	1	X5	10	1	0	3	X5	200
X5	280	1			_	-	-		

• Gain only depend on the g_i and h_i

$$Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda}$$

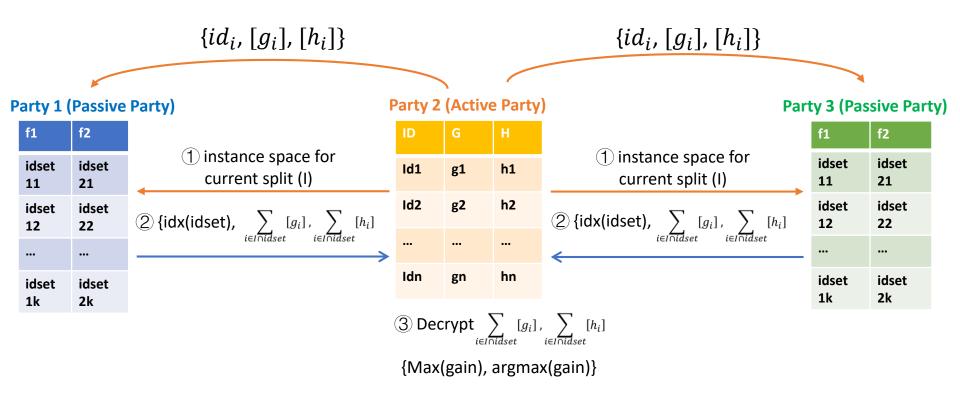
Federated Learning for XGBoost

Party 1 (Passive			Party 2 (Active Party)				Party	Party 3 (Passive Party)	
Example BillParty)	BIIParty)	Education	Example	Age	Gender	Marriage	Label	Example	Amount of given credi
	Payment		X1	20	1	0	0	X1	5000
X1	3102	2	X2	30	1	1	1	X2	300000
X2	17250	3	X3	35	0	1	1	Х3	250000
Х3	14027	2	X4	48	0	1	2	X4	300000
X4	6787	1	X5	10	1	0	3	X5	200
¥5	280	1			_	-			

- The class label is needed for the calculation of g_i and h_i
- Only active party holds label
- How to calculate Gain?

Federated Algorithm for Split Finding

 $[g_i]$: hormomorphic encrypted g_i $[h_i]$: hormomorphic encrypted h_i



Learned SecureBoost

Party 1 (Passive Party)

Example	BIII Payment	Education
X1	3102	2
X2	17250	3
X3	14027	2
X4	6787	1
X5	280	1

Party 2 (Active Party)

X1 X2 Х3 X4 X5

Pa

Party 3 (Passive Party)

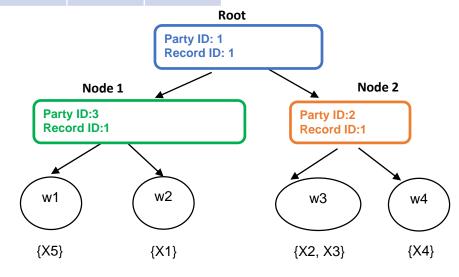
Example	Amount of given credit
X1	5000
X2	300000
Х3	250000
X4	300000
X5	200

Lookup table

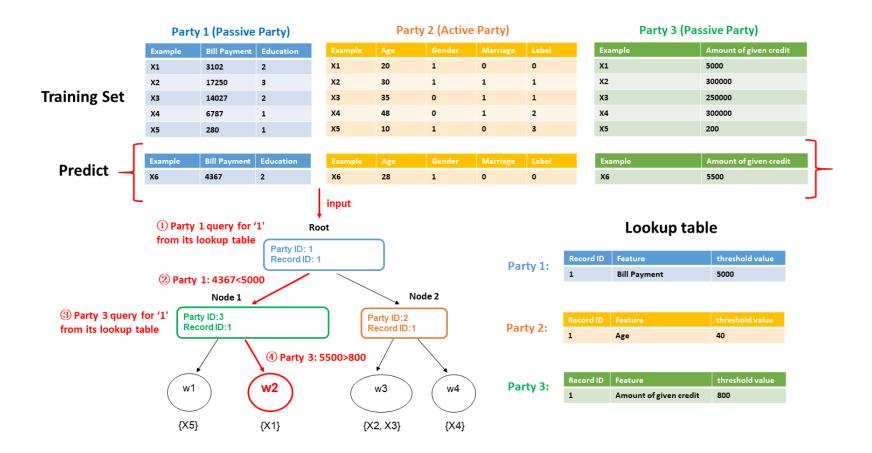
	Record ID	Feature	threshold value
Party 1:	1	Bill Payment	5000

	Record ID	Feature	threshold value
rty 2:	1	Age	40

Party 3:	Record ID	Feature	threshold value
Party 5.	1	Amount of given credit	800



Federated Inference

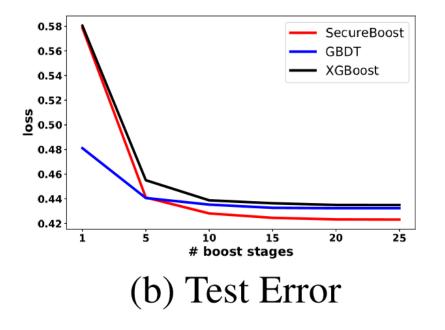


Advantages

- No exposure of raw data
- Property of Lossless

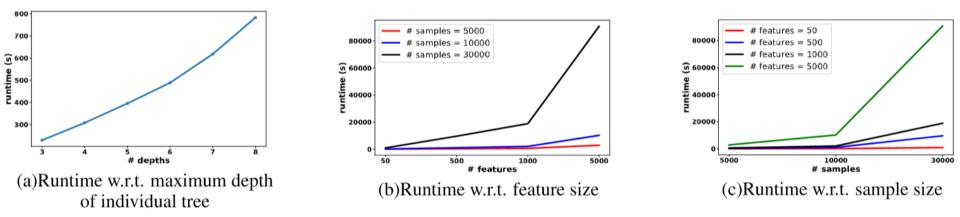
The source code of SecureBoost can be seen in FATE (An Industrial Level Federated Learning Framework: <u>https://github.com/WeBankFinTech/FATE</u>)

Property of Lossless



- Our proposed SecureBoost framework perform equally well as baseline methods.
- We also give a theoretical analysis for lossless property.

Scalability



- With the increase of the maximum depth of each individual tree, the runtime increases almost linearly.
- Sample and feature numbers contribute equally to running time.

Thanks