跳转至

Feature Scale

Feature scale is a process that scales each feature along column. Feature Scale module supports min-max scale and standard scale.

  1. min-max scale: this estimator scales and translates each feature individually such that it is in the given range on the training set, e.g. between min and max value of each feature.
  2. standard scale: standardize features by removing the mean and scaling to unit variance

Param

scale_param

Attributes

Classes

ScaleParam(method='standard_scale', mode='normal', scale_col_indexes=-1, scale_names=None, feat_upper=None, feat_lower=None, with_mean=True, with_std=True, need_run=True)

Bases: BaseParam

Define the feature scale parameters.

Parameters:

Name Type Description Default
method

like scale in sklearn, now it support "min_max_scale" and "standard_scale", and will support other scale method soon. Default standard_scale, which will do nothing for scale

"standard_scale"
mode

for mode is "normal", the feat_upper and feat_lower is the normal value like "10" or "3.1" and for "cap", feat_upper and feature_lower will between 0 and 1, which means the percentile of the column. Default "normal"

"normal"
feat_upper int or float or list of int or float

the upper limit in the column. If use list, mode must be "normal", and list length should equal to the number of features to scale. If the scaled value is larger than feat_upper, it will be set to feat_upper

None
feat_lower

the lower limit in the column. If use list, mode must be "normal", and list length should equal to the number of features to scale. If the scaled value is less than feat_lower, it will be set to feat_lower

None
scale_col_indexes

the idx of column in scale_column_idx will be scaled, while the idx of column is not in, it will not be scaled.

-1
scale_names list of string

Specify which columns need to scaled. Each element in the list represent for a column name in header. default: []

None
with_mean bool

used for "standard_scale". Default True.

True
with_std bool

used for "standard_scale". Default True. The standard scale of column x is calculated as : z = (x - u) / s , where u is the mean of the column and s is the standard deviation of the column. if with_mean is False, u will be 0, and if with_std is False, s will be 1.

True
need_run bool

Indicate if this module needed to be run, default True

True
Source code in federatedml/param/scale_param.py
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def __init__(
        self,
        method="standard_scale",
        mode="normal",
        scale_col_indexes=-1,
        scale_names=None,
        feat_upper=None,
        feat_lower=None,
        with_mean=True,
        with_std=True,
        need_run=True):
    super().__init__()
    self.scale_names = [] if scale_names is None else scale_names

    self.method = method
    self.mode = mode
    self.feat_upper = feat_upper
    # LOGGER.debug("self.feat_upper:{}, type:{}".format(self.feat_upper, type(self.feat_upper)))
    self.feat_lower = feat_lower
    self.scale_col_indexes = scale_col_indexes

    self.with_mean = with_mean
    self.with_std = with_std

    self.need_run = need_run
Attributes
scale_names = [] if scale_names is None else scale_names instance-attribute
method = method instance-attribute
mode = mode instance-attribute
feat_upper = feat_upper instance-attribute
feat_lower = feat_lower instance-attribute
scale_col_indexes = scale_col_indexes instance-attribute
with_mean = with_mean instance-attribute
with_std = with_std instance-attribute
need_run = need_run instance-attribute
Functions
check()
Source code in federatedml/param/scale_param.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
def check(self):
    if self.method is not None:
        descr = "scale param's method"
        self.method = self.check_and_change_lower(self.method,
                                                  [consts.MINMAXSCALE, consts.STANDARDSCALE],
                                                  descr)

    descr = "scale param's mode"
    self.mode = self.check_and_change_lower(self.mode,
                                            [consts.NORMAL, consts.CAP],
                                            descr)
    # LOGGER.debug("self.feat_upper:{}, type:{}".format(self.feat_upper, type(self.feat_upper)))
    # if type(self.feat_upper).__name__ not in ["float", "int"]:
    #     raise ValueError("scale param's feat_upper {} not supported, should be float or int".format(
    #         self.feat_upper))

    if self.scale_col_indexes != -1 and not isinstance(self.scale_col_indexes, list):
        raise ValueError("scale_col_indexes is should be -1 or a list")

    if self.scale_names is None:
        self.scale_names = []
    if not isinstance(self.scale_names, list):
        raise ValueError("scale_names is should be a list of string")
    else:
        for e in self.scale_names:
            if not isinstance(e, str):
                raise ValueError("scale_names is should be a list of string")

    self.check_boolean(self.with_mean, "scale_param with_mean")
    self.check_boolean(self.with_std, "scale_param with_std")
    self.check_boolean(self.need_run, "scale_param need_run")

    LOGGER.debug("Finish scale parameter check!")
    return True

最后更新: 2021-11-15